I. Fundamental Group and Covering Spaces
A. Fundamental Group
the basic idea is to "probe the topology of a space with loops mapped into the space"
intuitively any loop in

but there are loops in

that get "caught on the topology" and cannot be shrunk. find "holes"
in the space

rigorously, as we said above the fundamental group of a topological space X with a base point $x_{0} \in X$ is

$$
\pi_{1}\left(x, x_{0}\right)=\left[s^{\prime}, x\right]_{0} \text { homotopy classes of } s^{\prime} \text { to } x
$$

we want to see a group structure on this, to this end we need
exercise: let $s^{\prime} \subset \mathbb{R}^{2}$ be the unit circe

$$
\begin{aligned}
& \rho:[0,1] \rightarrow s^{\prime} \\
& t \mapsto(\cos 2 \pi t, \sin 2 \pi t)
\end{aligned}
$$

is a quotient map (ie. can thrik of S^{\prime} as $[0,1]$ with end pts identified)
moreover, there is a one-to-one correspondence between $\gamma:(\{0,1\},\{0,1\}) \rightarrow\left(x, \gamma_{0}\right)$ call this a based loop and in x

$$
\left.\hat{\gamma}:\left(s^{\prime},\{1,0)\right\}\right) \rightarrow\left(x, x_{0}\right)
$$

(given by $\hat{\gamma} \circ p=\gamma$)
so $\left[s^{\prime}, x\right]_{0}$ is the same as $\left[([0,1],\{0,1\}),\left(X, x_{0}\right)\right]$ homotopy, rel end pts, classes of loops in X based at x_{0}
if $\gamma:[0,1] \rightarrow x$ a based loop, then its homotopy class is denoted $[r]$
if γ_{1}, γ_{2} are two loops based at x_{0} then define
$\gamma_{1} * \gamma_{2}$ to be the loop

$$
\gamma_{1} * \gamma_{2}:[0,1] \rightarrow X: t \longmapsto \begin{cases}\gamma(2 t) & 0 \leq t \leq 1 / 2 \\ \gamma / 2 t-1) & 1 / 2 \leq t \leq 1\end{cases}
$$

ie. go around γ_{1} then around γ_{2}
$\gamma_{1} * \gamma_{2}$ is clearly well-defined on loops, but is if well-defined on homotopy classes of loops?
let $\gamma_{1} \sim \gamma_{2}$ by homotopy $H:[0,1] \times[0,1] \rightarrow X$

$$
\delta_{1} \sim \delta_{2} \quad u \quad " \quad G:[0,1] \times[0,1] \rightarrow X
$$

we need to fired a homotopy $\gamma_{1} * \delta_{1}$ to $\gamma_{2} * \delta_{2}$

$$
\begin{array}{ll}
\text { that } w \text { a map } \tilde{H}:[0,1] \times[0,1] \rightarrow X \text { s: } & \tilde{H}(t, 0)=\gamma_{1} * \delta_{1} \\
& \tilde{H}(t, 1)=\gamma_{2} * \delta_{2} \\
& \tilde{H}(i, s)=x_{0} \quad i=0,1, \forall s
\end{array}
$$

Re. $x_{0}{\underset{\gamma_{1} * \delta_{1}}{\gamma_{2} * \delta_{2}} x_{0}}_{x_{0}} \rightarrow X$
we can fill in? with H and G :

$$
\text { rigorously } \tilde{H}(t, s)=\left\{\begin{array}{ll}
H(2 t, s) & 0 \leq t \leq 1 / 2 \\
G(2 t-1, s) & 1 / 2 \leq t \leq 1
\end{array} \leftarrow\right. \text { idea for to gemotopy }
$$

so $\left[\gamma_{1}\right] *\left[\delta_{1}\right]=\left[\gamma_{1} * \delta_{1}\right]$ is well-defined!
lemma 1:

$$
\left(\pi_{1}\left(x, x_{0}\right), *\right) \text { is a group }
$$

Proof:
identity: let $e:[0,1] \rightarrow X: t \mapsto x_{0}$ constant loop
note: $[e] *[\gamma]=[\gamma]=[\gamma] *[e]$
Pile tore:
 translate:

$$
H(t, s)= \begin{cases}\gamma\left(\frac{2 t}{1+s}\right) & 0 \leq t \leq \frac{1+s}{2} \\ x_{0} & \frac{1+s}{2} \leq t \leq 0\end{cases}
$$

inverses: given $[\gamma]$, then $\left.[\gamma]^{-1}=\sum_{\gamma} \bar{\gamma}\right]$ where $\bar{\gamma}(t)=\gamma(1-t)$

Picture:

where $\gamma_{s}(t)=\gamma(s t)$
note

$$
\bar{\gamma}_{s}(t)=\gamma(s-s t)
$$

rigorously

$$
H(t, s)=\left\{\begin{array}{ll}
\gamma_{s}(2 t) & t \leq 1 / 2 \\
\bar{\gamma}_{s}(2 t-1) & t \geq 1 / 2
\end{array}\right\}= \begin{cases}\gamma(2 s t) & t \leq 1 / 2 \\
\gamma(s-s(2 t-1)) & t \geq 1 / 2\end{cases}
$$

assoccätivcty: need to see $\left(\gamma_{1} * \gamma_{2}\right) * \gamma_{3} \sim \gamma_{1} *\left(\gamma_{2} * \gamma_{3}\right)$
Picture:

exercise: write out H.

If $f: X \rightarrow Y$ a map
$x_{0} \in X$ any $y_{0}=f\left(x_{0}\right)$
then given any loop $\gamma:[0,1] \rightarrow X$ based at x_{0}
we get a loop for: $[0,1] \rightarrow Y$ based at y_{0}
exercise: If $\gamma \sim \delta$ then for $\sim f \circ \delta$
so f induces a map

$$
\begin{aligned}
f_{*}: \pi_{c}\left(x_{1}, x_{0}\right) & \rightarrow \pi_{1}\left(y_{1} y_{0}\right) \\
{[\gamma] } & \longmapsto f \circ \gamma]
\end{aligned}
$$

lemma 2:
f_{*} is a homomorphism

Proof: $\left[\gamma_{1}\right],\left[\gamma_{2}\right] \in \pi_{1}\left(x, x_{0}\right)$

$$
\begin{aligned}
& \gamma_{1} * \gamma_{2}(t)= \begin{cases}\gamma_{1}(2 t) & 0 \leq t \leq 1 / 2 \\
\gamma_{2}(2 t-1) & 1 / 2 \leq t \leq 1\end{cases} \\
& \quad\left(f \circ \gamma_{1}\right) *\left(f \circ \gamma_{2}\right)= \begin{cases}f \circ \gamma_{1}(2 t) & 0 \leq t \leq 1 / 2 \\
f \circ \gamma_{2}(2 t-1) & 1 / 2 \leq t \leq 1\end{cases}
\end{aligned}
$$

so $f \circ\left(\gamma_{1} * \gamma_{2}\right)=\left(f \circ \gamma_{1}\right) *\left(f \circ \gamma_{2}\right)$
ie $f_{*}\left(\left[r_{1}\right] *\left[\gamma_{2}\right]\right)=f_{*}\left(\left[\gamma_{1}\right]\right) * f_{*}\left(\left[r_{2}\right]\right)$
exercise:

1) $(f \circ g)_{x}=f_{*} \circ g_{x}$
2) If $f: X \rightarrow Y$ is homotopic to $g: X \rightarrow Y$ relative to $x_{0} \in X$ then $f_{*}=g_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y_{1} y_{0}\right)$

How does π_{1} depend on the base polit?
let $h:\{0,1\} \rightarrow X$ be a path with $h(0)=x_{0}$ and $h(1)=x_{1}$
if γ is a loop in X based at X_{1}, then note

$$
h * \gamma * \bar{h}(t)= \begin{cases}h(3+) & 0 \leq t \leq 1 / 3 \\ \gamma(3 t-1) & 1 / 3 \leq t \leq 2 / 3 \\ \bar{h}(3 t-1) & 2 / 3 \leq t \leq 1\end{cases}
$$

is a loop based at x_{0}

lemma 3:
h induces an isomorphism

$$
\begin{aligned}
\phi_{h}: \pi_{1}\left(x, x_{1}\right) & \rightarrow \pi_{1}\left(x, x_{2}\right) \\
{[\gamma] } & {[h * \gamma * \bar{h}] }
\end{aligned}
$$

Remarks:

1) so isomorphisin type of $\pi_{1}\left(x, x_{0}\right)$ only depends on path component of X in which x_{0} lies
2) The isomorphism depends on h !

Proof: ϕ_{h} is a well-defined homomorphism (exercise)
Claim $\phi_{\bar{n}}$ is the inverse of ϕ_{h} indeed given $[\gamma] \in \pi_{1}\left(x, x_{0}\right)$

$$
\begin{aligned}
\phi_{h} \circ \phi_{\bar{h}}([\gamma]) & =\underset{\text { loop based at } x_{0}}{\left[h_{n} * \bar{h} * \gamma * h * \bar{h}\right]} \\
& =[h * \bar{h}] *[\gamma] *[h * \bar{h}]
\end{aligned}
$$

but $h * \bar{h} \sim e$ as a loop based at x_{0}

$$
\text { so } \phi_{h} \circ \phi_{\bar{h}}([\gamma])=[e] *[\gamma] *[e]=[\gamma]
$$

you can suriblarly chech $\phi_{\bar{n}} \circ \phi_{h}={ }^{d} \pi_{1}\left(x, x_{1}\right)$
Th ${ }^{m}$ 4:
If $f: X \rightarrow Y$ is a homotopy equivalence, then

$$
f_{*}: \pi_{1}\left(x, x_{0}\right) \rightarrow \pi_{1}\left(y_{1} f\left(x_{0}\right)\right)
$$

is an isomorphism
to prove this we need
lemma 5:
Suppose $f_{0}, f_{1}: X \rightarrow Y$ are homotopic via the homotopy

$$
H: X \times[0,1] \rightarrow Y
$$

let $x_{0} \in X$ and $h:[0,1] \rightarrow Y: t \mapsto H\left(x_{0}, t\right)$
Then

Proof of $\pi^{m}-4$:
let g be the homotory universe of f so

$$
\pi_{1}\left(X, x_{0}\right) \xrightarrow{f_{*}} \pi_{1}\left(Y_{1} f\left(x_{0}\right)\right) \xrightarrow{g_{x}} \pi_{1}\left(X, g\left(f\left(x_{0}\right)\right)\right)
$$

now $g_{*} \circ f_{*} \sim i_{x}$ so by lemma \exists path h st.
$g_{*} \circ f_{*}=\phi_{h}$ an isomorphism
so f_{*} is infective
similarly $f_{*} \circ g_{*}$ is an isomorphism so f_{*} is surjective
$\therefore f_{*}$ an isomorphism
Proof of lemma 5:

exercise: write out explicit h notopy
Recap: We have a "functor"

$$
\left\{\begin{array}{c}
\text { pointed topological } \\
\text { spaces, } \\
\text { pointed maps }
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\text { groups, } \\
\text { homomorphisms }
\end{array}\right\}
$$

homotopii spaces map to isomorphic groups homotopic functions map to the "same" homomorphism
B. Simple Computations
lemma 6:
If X is contractible
then $\pi_{1}\left(X, x_{0}\right)=\{1\} \quad \forall x_{0} \in X$
Proof: If X is a one point space, then \exists ! loop $\gamma:[0,1] \rightarrow X$
so $\pi_{i}\left(x, x_{0}\right)=\{1\}$
(constant loop)
X contractible $\Rightarrow X \simeq$ one point space
so done by $\mathrm{Th}^{\boldsymbol{m}} 4$
Remark: A space X is called simply connected
(f i) X is path connected, and
2) $\pi_{1}\left(x, x_{0}\right)=\{1\}$
so contractible spaces are simply connected
simply connected means "path connected in a particularly simple. way"
lemma 7:
X is simply connected \Leftrightarrow every two points in X are connected by a unique homotopy class of paths in X

Proof: \Leftrightarrow) path connected by existence of path any loop based at x h homotopic to constant loop by uniqueness of homotopy class of path.
\Leftrightarrow path connected gives existence of path a to b given 2 paths $\gamma, \delta:[0,1] \rightarrow x$ from a to b simple connectivity implies $a * \bar{b} \sim e_{a}$ "constant ${ }^{\text {path }}$
now $\gamma \sim \gamma *(\bar{\delta} * \delta) \sim(\gamma * \bar{\delta}) * \delta \sim e_{a} * \delta \sim \delta$
from proof of
from proof
lemma l 1 even of lemma l
though δ a path (all homoteppies
$\bar{\delta} * \delta \sim e_{b}$ vel end pts of path)

Th ${ }^{m} 8:$

$$
\pi_{1}\left(S^{n}\right)=\{1\} \forall n \geq 2
$$

need lemma
lemma 9:
let $X=A \cup B$
A, B, and $A \cap B$ open and path connected

$$
x_{0} \in A \cap B
$$

Then any loop $\gamma:\{0,1] \rightarrow X$ based at x_{0}
can be written as $\gamma \sim \gamma_{1} * \ldots * \gamma_{n}$
where each γ_{1} is a loop in A or B based at x_{0}
Proof of Th m 8:

$$
\text { let } \begin{aligned}
A & =S^{n}-\{(0, \ldots, 0,1)\} \cong \mathbb{R}^{n} \\
B & =S^{n}-\{(0, \ldots, 0,-1)\} \cong \mathbb{R}^{n} \\
A \cap B & =S^{n}-\left\{\begin{array}{c}
0, \ldots,-1) \\
(0, \ldots, 1)
\end{array}\right\} \cong S^{n-1} \times \mathbb{R}
\end{aligned}
$$

all are path connected
take $x_{0} \in A \cap B$
any $[\gamma] \in \pi_{1}\left(S_{1}^{n}, x_{0}\right)$ can be written as

$$
[\gamma]=\left[\gamma_{1}\right]\left[\gamma_{2}\right] \ldots\left[\gamma_{n}\right] \text { where }\left[\gamma_{2}\right] \in \pi_{1}\left(A, x_{0}\right)
$$

or $\pi_{1}\left(B, x_{0}\right)$ by lemma 9
but $\pi_{1}\left(A, x_{0}\right)=\{1\}=\pi_{1}\left(B, x_{0}\right)$ so $[\gamma]=\left[e_{x}\right]$ and hence $\pi_{1}\left(S^{n}, x_{0}\right)=\{1\}$

Proof of lemma 9:
given $\gamma:[0,1] \rightarrow X$ a loop based at x_{0}
Claim: there exist $0=t_{0}<t_{1}<\ldots<t_{n}=1$ such that
 and $\gamma_{2}=\left.\gamma\right|_{\left[t_{2-1}+t_{2}\right]}$

Pf of Claim:
need Topology Fact (Lebesgue number lemma)

Hatcher's proof implicitly uses the Axiom of choice (when choosing intervals containing each point). The proof here is more "direct"
for a proof see any or topology analysis book
$\left\{U_{\alpha}\right.$ impact metric space $\left\{U_{\alpha}\right\}_{\alpha \in A}$ an open cover \exists a number $\delta>0$ (Lebesgue\#) st. \forall sets S with $\operatorname{diam}(s)<\delta$ $\exists \alpha$ st. Sc U_{α}
now $U_{1}=\gamma^{-1}(A), U_{2}=\gamma^{-1}(B)$ is an open cover of $[0,1]$ so $\exists \delta>0$ st. if $|b-a|<\delta$ then $[a, b]<U_{2} \quad i=0$ or 1
let n be st. $\frac{1}{n}<\delta$
now $\left.\gamma\right|_{\left[\frac{1}{n}, \frac{1+1}{n}\right]} \subset A$ or B
so start with $t_{1}=\frac{i}{n} \quad 1=0, \ldots n$
now if $\gamma_{\left[t_{1-1}, t_{2}\right]}, \gamma_{\left[t_{1}, t_{2}+1\right]}$ both in A or B
the throw out t_{1}
continuing gives desired partition
Th ${ }^{\mathrm{m}} 10$:

$$
\pi_{1}\left(X \times Y_{1}\left(x_{0}, Y_{0}\right)\right) \cong \pi_{1}\left(X, X_{0}\right) \times \pi_{1}\left(Y, Y_{0}\right)
$$

Proof: $\Phi: \pi_{1}\left(x, x_{0}\right) \times \pi_{1}\left(y_{1}, y_{0}\right) \rightarrow \pi_{1}\left(x \times y_{1}\left(x_{0}, y_{0}\right)\right)$

$$
([\gamma],[\delta]) \longmapsto[\gamma \times \delta] \text { where }(\gamma \times \delta)(t)=(\gamma(t), \delta(t))
$$

is an isomorphism
exercisé: 1) Show Φ is well-defired homomorphism
2) Show Φ is bijection (use projection)
C. Fundamental Group of S'

$$
\text { Th }{ }^{m} 11:
$$

$$
\pi_{1}\left(s_{1}^{\prime}(1,0)\right) \cong \mathbb{Z}
$$

the isomorphism sends $n \in \mathbb{Z}$ to

$$
\gamma_{n}:[0,1] \rightarrow s^{\prime}: t \mapsto(\cos 2 n \pi t, \sin 2 n \pi t)
$$

Remark: Proof is an example of very miportant technegve that we will see again!

The proof involves studying the map

\bigcirc note: $\left.p^{-1}(1,0)\right)=\mathbb{Z}$
ρ is a special case of a covering map (we will study these quite a bit later)
If $\gamma:[0,1] \rightarrow S^{\prime}$ is a path based at $(1,0)$ then a lift of γ based at $n \in \mathbb{Z}$ is a map $\tilde{\gamma}:[0,1] \rightarrow \mathbb{R}$ st.

1) $\tilde{\gamma}(0)=n$
2) $p \circ \tilde{\gamma}(x)=\gamma(x) \quad \forall x$

lemma 12:
a) for each $n \in \mathbb{Z}$, each loop $\gamma:[0,1] \rightarrow \delta^{\prime}$ based at (10) lifts to a unique path $\tilde{\gamma}_{n}$ based at n.
b) if $\gamma \sim \gamma^{\prime}$ are loops in S^{\prime} based at $(1,0)$ and $\tilde{\gamma}_{n}$ and $\tilde{\gamma}_{n}^{\prime}$ are lifting their lifts based at n, then $\tilde{\gamma}_{n} \sim \tilde{\gamma}_{n}^{\prime}$ rel $\{0,1\}$

Proof of $T h^{m} 11$ given lemma 12:
Given $\gamma \in[\gamma] \in \pi_{1}\left(S_{1}^{\prime}(1,0)\right)$
lemma 12 a) says $\exists!\tilde{\gamma}_{0}:[0,1] \rightarrow \mathbb{R}$
since $\tilde{\gamma}_{0}(1) \in p^{-1}((1,0))=\mathbb{Z}$ we can define

$$
\begin{aligned}
\Phi: \pi_{1}\left(S_{1}^{\prime}(1,0)\right) & \longrightarrow \mathbb{Z} \\
{[\gamma] } & \longmapsto \tilde{\gamma}_{0}(1)
\end{aligned}
$$

lemma 126) say Φ is we (l-defiried
Isurjeitive: let $\tilde{\delta}^{n}(t)=n t$ for $t \in[0,1]$
and $\delta^{n}(t)=\operatorname{pos}^{n}$
clearly $\tilde{\delta}^{n}$ is a lift based at 0 of the loop δ^{n}
and $\Phi\left(\left[\delta_{n}\right]\right)=n$
Φ is injective:
suppose $\gamma_{1} \gamma^{\prime}$ are two loops in S^{\prime} st. $\tilde{\gamma}_{0}(1)=\tilde{\gamma}_{0}^{\prime}(1)$
set $\tilde{H}(s, t)=(1-t) \tilde{\gamma}_{0}(s)+t \tilde{\gamma}_{0}^{\prime}(s)$
and $H(s, t)=p \circ \tilde{H}(s, t)$
note: $H(s, 0)=\gamma(s)$

$$
\begin{aligned}
& H(s, 1)=\gamma^{\prime}(s) \\
& H(0, t)=(1,0)=H(1, t) \quad \forall \tau
\end{aligned}
$$

ie. H is a homotopy of based loops ie. $\gamma \sim \gamma^{\prime}$

I a homomorphism:
given $[\gamma],\left[\gamma^{\prime}\right] \in \pi_{1}\left(s^{\prime},(1,0)\right)$
let $\tilde{\gamma}_{0}, \tilde{\gamma}_{0}^{\prime}$ be the lifts of $\gamma, \gamma^{\prime}($ based at 0$)$

$$
\Phi([\gamma])=\tilde{\gamma}_{0}(1)=n \quad \Phi\left(\left[\gamma^{\prime}\right]\right)=\tilde{\gamma}_{0}^{\prime}(1)=m
$$

note: 1$) \tilde{\gamma}_{n}^{\prime}(t)=n+\tilde{\gamma}_{0}^{\prime}(t)$ since $r t$. hand side us a lift and lift is unique
2) $\tilde{\gamma}_{0} * \tilde{\gamma}_{n}^{\prime}$ is a lift of $\gamma * \gamma^{\prime}$ based at 0
so $\Phi\left([\gamma]\left[\gamma^{\prime}\right]\right)=\widetilde{\gamma * \gamma^{\prime}}(1)=\tilde{\gamma}_{0} * \tilde{\gamma}_{1}^{\prime}(1)=n+m$

$$
=\Phi([\gamma])+\Phi\left(\left[\gamma \gamma^{\prime}\right]\right)
$$

Proof of lemma 12: exercise: think about uniqueness (we will do more
part): let $A=S^{\prime}-\{(1,0)\}$ about this for general covering space)

$$
P^{-1}(A)=\bigcup_{i \in \mathbb{Z}} \underbrace{(1,1+1)}_{A_{i}}
$$

note: $\left.P\right|_{A_{1}}: A_{1} \rightarrow A$ a homeomorphism!
similarly if $B=S^{\prime}-\{(-1,0)\}$
then $P^{-1}(B)=\bigcup_{i \in \mathbb{Z}} \underbrace{(\eta-1 / 2+1 / 2)}_{B_{i}}$
and $\left.\rho\right|_{B_{1}}: B_{q} \rightarrow B$ a homeomor phism
Obvious but important observation:

If $f: x \rightarrow S^{\prime}$ has mage in A
then after choosing $n \in \mathbb{Z} \exists$ a unique map

$$
\tilde{f}: x \rightarrow A_{n} \subset \mathbb{R}
$$

such that po $=f$
ie. just set $\tilde{f}=\left(p l_{A_{n}}\right)^{-1} \circ f$
similarly for $f(x) \subset B$.
now given a loop $\gamma:\left\{\theta_{1}, 1\right] \rightarrow S^{\prime}$ based at $(1,0)$
note: $\left\{\gamma^{-1}(A), \gamma^{-1}(B)\right\}$ an open cover of compact $[0,1]$
so \exists Lebesgue number $\delta>0$ for cover
choose n st. $\frac{1}{n}<\delta$
note: (f $t_{2}=\frac{1}{n}$ then $\gamma\left(\left\{t_{1}, t_{2+1}\right\}\right) \subset A$ or B
if $\gamma\left(\left\{t_{1}-1, t_{1}\right]\right)$ and $\gamma\left(\left\{t_{2}, t_{2+1}, 1\right)\right.$ lie in same A or B then discard t_{i} (do this inductively on i)
so we get a partition $t_{0}=0<t_{1}<\ldots<t_{k}=1$ of $[0.1]$ st $\gamma\left(\left[t_{1}, t_{2+1}\right]\right) c\left\{\begin{array}{l}B \text { for } 1 \text { even (since } \mathbb{Z} \cap A=\varnothing) \\ A \text { for } 1 \text { odd }\end{array}\right.$
now set $\widetilde{\gamma}_{n}=\left(\left.p\right|_{B_{n}}\right)^{-1} \circ \gamma$ on $\left.\varepsilon t_{0}, t_{1}\right]$
note: $\tilde{\gamma}_{n}\left(t_{1}\right) \in A_{k}$ some k
so set $\tilde{\gamma}_{n}=\left(\left.P\right|_{A_{k}}\right)^{-1} \cdot \gamma_{n}$ on $\left[t_{11} t_{2}\right]$
inductively contrive to get $\tilde{\gamma}_{n}$ defined on $[0,1]$
since all lifts agree at endpoints $\tilde{\gamma}_{n}$ is continuous and clearly the desired lift!
part b):
just like proof path lifting: Given homotopy $H:[0,1] \times[0,1] \rightarrow s^{\prime}$ get Lebesgue number $\delta>0$ for $\left\{H^{-1}(A), H^{-1}(B)\right\}$ pick n st. $\frac{\sqrt{2}}{n}<\delta$ then consider

each square can be lifted exercise: write out details

Many corollaries of this computation, eg
Cor 13:
There is no retraction $D^{2} \rightarrow \partial D^{2}$

Proof: If there were a retraction $r: D^{2} \rightarrow S^{\prime}=\partial D^{2}$ then consider the inclusion map $i: S^{1} \longrightarrow D^{2}$ (as ∂D^{2}) note roil' $\rightarrow S^{\prime}$ \& the identity map!
so $r_{*} \circ q_{*}=(r \circ i)_{*}=\left(i d_{\delta^{\prime}}\right)_{x}={ }^{1 d} \pi_{1}\left(s^{\prime},(c o)\right): \mathbb{Z} \rightarrow \mathbb{Z} \Rightarrow i_{*}$ infective but $\pi_{1}\left(D_{1}^{2}(1,0)\right)=\{1\}$, so $\tau_{x}=$ constant map \otimes injectivity
Cor 14:
any map $f: D^{2} \rightarrow D^{2}$ has a fixed point
Proof: if $f: D^{2} \rightarrow D^{2}$ had no fixed points, then for each $x \in D$ let $R_{x}=$ ray starting at $f(x)$ going through x note: $R_{x} \cap \partial D^{2}$ in exactly I point y_{x} set $g(x)=y_{x}$

exercise: $g(x)$ continuous (e qi for R_{x} continuous in x $\therefore e_{q}{ }^{\wedge}$ for $R_{x} \cap S^{\prime}$ contirinuous in x)
clary 9 a retraction! \& Cor 13
Many other applications!

1) Fundamental The ${ }^{\text {n }}$ of Algebra
2) Borsuk-Ulam $T^{n}{ }^{\text {n }}$ (abb maps $S^{2} \rightarrow S^{\prime}$ and $S^{2} \rightarrow \mathbb{R}^{2}$)
3) Ham sandwich th ${ }^{\text {n }}$
\vdots
see Hather's Book and supplinient class webpage
